Kinetics of antigen binding to antibody microspots: strong limitation by mass transport to the surface.
نویسندگان
چکیده
It is well documented that diffusion has generally a strong effect on the binding kinetics in the microtiter plate immunoassays. However, a systematic quantitative experimental evaluation of the microspot kinetics is still missing in the literature. Our work aims at filling this important gap of knowledge on the example of antigen binding to antibody microspots. A mathematical model was derived within the framework of two-compartment model and applied to the quantitative analysis of the experimental data obtained for typical antibody microspot assays. A strong mass-transport dependence of the antigen-antibody microspot kinetics was identified to be one of the main restrictions of this new technology. The binding reactions are slowed down in the microspot immunoassays by several orders of magnitude as compared with the corresponding well-stirred bulk reactions. The task to relax the mass-transport limitations should thus be one of the most important issues in designing the antibody microarrays. These limitations notwithstanding, the detection range of more than five orders of magnitude and the high sensitivity in the low femtomolar range were experimentally achieved in our study, demonstrating thus an enormous potential of this highly capable technology.
منابع مشابه
Bioinformatics prediction and experimental validation of VH antibody fragment interacting with Neisseria meningitidis factor H binding protein
Objective(s): We previously conducted an in silico research on the interactions between the ribosome display-selected single chain variable fragment (scFv) and factor H binding protein (fHbp) of Neisseria meningitidis. We found that heavy chain variable (VH) fragment of this scFv had considerable affinity to fHbp. These results led us to evaluate the ability of this sm...
متن کاملIdentification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi
A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...
متن کاملProduction and Characterization of a Monoclonal Antibody against an Antigen on the Surface of Non-Small Cell Carcinoma of the Lung
Background: Lung carcinoma is a multiple type cancer comprising of small cell and non-small cell carcinomas (NSCLC). For therapeutic and diagnostic purposes, serum monoclonal antibodies have been produced against lung cancer. Objective: To charac-terize a murine monoclonal antibody (ME3D11) reactive with human NSCLC. Methods: A murine monoclonal antibody (ME3D11) reactive with human NSCLC was s...
متن کاملPriming Hepatitis B Surface (HBsAg)- and Core Antigen (HBcAg)-Specific Immune Responses by Chimeric, HBcAg with a HBsAg ‘a’ Determinant
We developed an immunogen to stimulate multivalent immunity against hepatitis B surface antigen (HBsAg) and hepatitis B core antigens (HBcAg). Immune responses specific for both HBsAg and HBcAg play an important role in controlling the infection. HBsAg-specific antibodies mediate elimination of virions at an early stage of infection and prevent the spread of virus. The immunogen was constructed...
متن کاملConstruction and Expression of Hepatitis B Surface Antigen Escape Variants within the "a" Determinant by Site Directed Mutagenesis
Background: The antibody response to hepatitis B surface antigen (HBsAg) controls hepatitis B virus infection. The "a" determinant of HBsAg is the most important target for protective antibody response, diagnosis and immunoprophylaxis. Mutations in this area may induce immune escape mutants and affect the performance of HBsAg assays. Objectives: To construct clinically relevant recombinant muta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteomics
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2006